Бесплатный онлайн-доступ
ISSN Print: 2152-5080
ISSN Online: 2152-5099
|
Архив
SPECIAL ISSUE: CELEBRATING THE ESTABLISHMENT OF A NEW UQ SOCIETY IN CHINA PART 2 GUEST EDITOR: TAO ZHOU
DOI: 10.1615/Int.J.UncertaintyQuantification.v9.i3
Table of Contents:
PREFACE: A SPECIAL ISSUE CELEBRATING A NEW UQ ACTIVITY GROUP IN CHINA
Tao Zhou
Tao Zhou
LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China
v страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.v9.i3.10
AN ADAPTIVE MULTIFIDELITY PC-BASED ENSEMBLE KALMAN INVERSION FOR INVERSE PROBLEMS
Liang Yan, Tao Zhou
Liang Yan
Department of Mathematics, Southeast University, Nanjing, 210096, China
Tao Zhou
LSEC, Institute of Computational Mathematics and Scientific/Engineering Computing,
Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing 100190,
China
205-220 страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.2019029059
A GENERAL FRAMEWORK FOR ENHANCING SPARSITY OF GENERALIZED POLYNOMIAL CHAOS EXPANSIONS
Xiu Yang, Xiaoliang Wan, Lin Lin, Huan Lei
Xiu Yang
Lehigh University
Xiaoliang Wan
Department of Mathematics and Center of Computation and Technology, Louisiana State
University, Baton Rouge, LA, 70803
Lin Lin
Department of Mathematics, University of California, Berkeley and Computational Research
Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Huan Lei
Advanced Computing, Mathematics and Data Division, Pacific Northwest National
Laboratory, Richland, WA, 99352
221-243 страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.2019027864
VARIABLE-SEPARATION BASED ITERATIVE ENSEMBLE SMOOTHER FOR BAYESIAN INVERSE PROBLEMS IN ANOMALOUS DIFFUSION REACTION MODELS
Yuming Ba, Lijian Jiang , Na Ou
Yuming Ba
College of Mathematics and Econometrics, Hunan University 1, Changsha 410082, China
Lijian Jiang
School of Mathematical Sciences, Tongji University, Shanghai 200092, China
Na Ou
College of Mathematics and Econometrics, Hunan University 1, Changsha 410082, China
245-273 страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.2019028759
AN EFFICIENT NUMERICAL METHOD FOR UNCERTAINTY QUANTIFICATION IN CARDIOLOGY MODELS
Xindan Gao, Wenjun Ying, Zhiwen Zhang
Xindan Gao
School of Mathematical Sciences, Shanghai Jiao Tong University, 800 Dongchuan Road,
Minhang, Shanghai, P.R. China, 200240
Wenjun Ying
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong,
SAR, China
Zhiwen Zhang
Department of Mathematics, The University of Hong Kong, Pokfulam Road, Hong Kong,
SAR, China
275-294 страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.2019027857
USING PARALLEL MARKOV CHAIN MONTE CARLO TO QUANTIFY UNCERTAINTIES IN GEOTHERMAL RESERVOIR CALIBRATION
Tiangang Cui, C. Fox, G. K. Nicholls, M. J. O'Sullivan
Tiangang Cui
School of Mathematical Sciences, Monash University, VIC 3800, Australia
C. Fox
Department of Physics, University of Otago, Dunedin 9016, New Zealand
G. K. Nicholls
Department of Statistics, University of Oxford, Oxford, OX1 3LG, United Kingdom
M. J. O'Sullivan
Department of Engineering Sciences, The University of Auckland, Auckland 1010, New
Zealand
295-310 страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.2019029282
A WEIGHT-BOUNDED IMPORTANCE SAMPLING METHOD FOR VARIANCE REDUCTION
Tenchao Yu, Linjun Lu, Jinglai Li
Tenchao Yu
School of Mathematical Sciences and Institute of Natural Sciences, Shanghai Jiao Tong
University, 800 Dongchuan Rd, Shanghai 200240, China
Linjun Lu
School of Naval Architecture, Ocean and Civil Engineering, Shanghai Jiao Tong University,
Shanghai 200240, China
Jinglai Li
School of Mathematics, University of Birmingham, Birmingham B15 2TT, United Kingdom
311-319 страниц
DOI: 10.1615/Int.J.UncertaintyQuantification.2019029511
|
|