Free Online Access
ISSN 印刷: 2152-5080
|
目的と範囲The International Journal for Uncertainty Quantification disseminates information of permanent interest in the areas of analysis, modeling, design and control of complex systems in the presence of uncertainty. The journal seeks to emphasize methods that cross stochastic analysis, statistical modeling and scientific computing. Systems of interest are governed by differential equations possibly with multiscale features. Topics of particular interest include representation of uncertainty, propagation of uncertainty across scales, resolving the curse of dimensionality, long-time integration for stochastic PDEs, data-driven approaches for constructing stochastic models, validation, verification and uncertainty quantification for predictive computational science, and visualization of uncertainty in high-dimensional spaces. Bayesian computation and machine learning techniques are also of interest for example in the context of stochastic multiscale systems, for model selection/classification, and decision making. Reports addressing the dynamic coupling of modern experiments and modeling approaches towards predictive science are particularly encouraged. Applications of uncertainty quantification in all areas of physical and biological sciences are appropriate.
Editor-in-Chief:
Habib N. Najm
Associate Editor:
Dongbin Xiu
, Tao Zhou
Founding Editor:
Nicholas Zabaras
アプリストアで現在販売中Read and Watch International Journal for Uncertainty Quantification on your iPad anywhere and anytime! Download our app here |
ホーム | Current Year | Archive Files | Authors Instructions | Submission Login | 連絡先 |